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J. Phys. A: Math. Gen. 16 (1983) L47-LS4. Printed in Great Britain 

LETl’ER TO THE EDITOR 

The Clebsch-Gordan coefficients and isoscalar factors of 
the graded unitary group SU(m/n)  

Jin-Quan Cheni, Xuan-Gen ChenJ: and Mei-Juan Gaot  
t Department of Physics, Nanjing University, Nanjing, People’s Republic of China 
$ Department of Physics, Engineer Institute of Engineer Corps, CPIA, Nanjing, People’s 
Republic of China 

Received 4 November 1982 

Abstract. It is pointed out that the Clebsch-Gordan coefficients iCGC) of the permutation 
group are the coefficients which couple irreducible bases iIRB) of SU(m/n) and SU(p/q) 
to the IRB of SU(mp + nq/mp + np), and the outer-product reduction coefficients iORC) 
of the permutation group are the coefficients which couple the IRB of SU(m/n) and 
SU(p/q)  into the IRB of SU(m +p/n +q) .  The ORC of permutation groups with due 
modification in signs are the CGC for the special Gel’fand basis of SU(m/n).  The isoscalar 
factor (ISF) for the permutation group chain S(f) 2 S ( f l ) x S ( f i )  is the ISF for the graded 
unitary group chain SU(mp + nq/mq + np) 3 SU(m/n) x SU(p/q) ,  and the outer-product 
ISF for the group chain S ( f ) 2 S ( f 1 ) x S ( f 2 )  is the ISF for S U ( m p + n q / m q + n p ) x  
SU(m/n)@SU(p/q) .  All these coefficients can be calculated easily and some are already 
available. 

The graded unitary group SU(m/n ), together with its possible applications in particle 
and nuclear physics, has been the subject of much research (Ne’eman 1979, Dondi 
and Jarvis 1979, 1981, Jarvis and Green 1979, Taylor 1979, Balantekin and Bars 
1981a, b, Balantekin et a1 1981, Sun and Xan 1981, Xan et a1 1981). Dondi and 
Jarvis (1981) and Balantekin and Bars (1981a) independently introduced the graded 
permutation group and showed that the irreducible representation (IRR) of SU(m/n)  
can be labelled by the graded Young diagram. Furthermore, Dondi and Jarvis (1981) 
have shown that for a large class of representations, the Young diagram techniques 
for Kronecker products, branching rules, dimension formulae, plethysyms and so on 
can be continued (with suitable modifications) into the graded case. However, to the 
best of our knowledge, the calculation of the CGC and ISF for the SU(m/n)  group 
remains an open question. 

We have successively solved the problem of the CGC and ISF for the ordinary 
unitary group in terms of the ordinary permutation group (Chen et a1 1978a, b, Chen 
1981, Chen and Gao 1982b). The advantage of this permutation group approach to 
the CGC or ISF of the unitary group lies in the fact that the results obtained are 
independent of the rank of the unitary group being considered. By an extension from 
the permutation group to the graded permutation group, all the results related to the 
ordinary unitary group (Chen et a1 1977b, Chen et a1 1978a,b, Chen 1981) can be 
transferred (with slight modifications) to the graded unitary group S U ( m / n ) .  In this 
letter we sketch some new, but surprisingly simple results concerning the CGC and 
ISF of SU(m/n). Detailed accounts will be published elsewhere. 
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Throughout the paper, we deal only with the so-called class I representations 
(Balantekin and Bars 1981a), i.e. the case with state indices A = a = 1,2,  . . . , m 
representing bosonic states and A = a = m + 1, , , . , m + n representing fermionic 
states. Most of our notation follows Chen (1981) and Chen and Gao (1982b). In the 
following we quote the results for the ordinary and graded cases in parallel to facilitate 
comparison. 

1. The Casimir invariants 

(a) Partensky (1972a, b) showed that, in the space of f particle product states, 
the kth power Casimir invariants 1: of the group U(m) are functions of the i-cycle 
class operators C&), i = k, k - 1, . . . , 2 ,  of the permutation group S ( f ) ,  as well as 
of the quantity m, namely 

1;: =Fk(C(k)(f), c ( k - l ) ( f ) ,  * * * 9 c(2)(f), m) k = m , m - l ,  . . . ,  2 , l  ( l a )  
where Fk denote functional relations. 

can be simply obtained from equation (la) by the substitutions 
(6) It can be shown (Chen et a1 1982a) that the Casimir invariants IF'" of U(m/n) 

c(i)(f) + e(i)(f) m + m - n .  (2) 
This gives 

1;'" = F k ( e ( k d f ) ,  e ( k - l ) ( f ) ,  * * 9 eC2)(f), m - n )  
( I b )  

where &(f) is the i-cycle class operator of the graded permutation group s(f), which 
is isomorphic to the ordinary permutation group S ( f ) .  

Equation (6) is crucial for all the following results. It shows that the Casimir 
operators of U(m/n) are functions of the cscol (complete set of commuting operators 
of the first kind, the counterpart of the Casimir operators) of s(f) (Chen et a1 1977a, 
Chen and Gao 1982a). Therefore if a basis vector belongs to the IRR (v) of SU(m/n), 
it must also belong to the IRR (v) of s(f) and vice versa. Consequently we can use 
partitions to label the IRR of SU(m/n) and S ( f ) .  

k = m + n , m + n - 1 ,  . . . ,  2 , l  

2. The Gel'fand basis of SU(m/n) 

(a) The so-called quasi-standard (or quasi-Yamanouchi) basis of the state permuta- 
tion group has been identified with the Gel'fand basis of SU(m) (Chen et a1 1977b, 
Chen and Gao (1982a). 

(b) Similarly, the quasi-standard basis of the graded state permutation group can 
be identificd with the Gel'fand basis of the SU(m/n) group, i.e. the IRB classified 
according to the group chain SU(m/n) 3 SU(m/n - 1) 3.  . . = SU(m) 3 SU(m - 1) 3 

. . .= SU(2) 3 U(1) (Chen et a1 1982a). We can use a graded (or super) Weyl tableau 
fii to label a SU(m/n) Gel'fand basis, v being the partition label and k the component 
indices. For example, 

SU(2/3) = SU(2/2) = SU(2/1) = SU(2) 3 U(l)  
belongs to the IRR [421] [321] [32] [21] [l] 
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where a, b, c, .  . . and a,@, 7 , .  . . are the state indices for bosons and fermions 
respectively. 

3. The SU(mp + nqlmq + np) 3 SU(m/n)  x SU@/q) IRB 

(a) Suppose IY2:,, WY1) (IY2z, W 2 ) )  is the Yamanouchi basis [vllml ([v23mz) of 
the permutation group S ( f ) ,  as well as the IRB [vl]W1 ([vzIWZ) of the group SU(m) 
(SU(n)) in the n (6 )  space, where Y2i are the Young tableaux, mi the Yamanouchi 
symbols, and W? = Wi the Weyl tableaux. The SU(mn) 3 SU(m) x SU(n) IRB can be 
constructed in terms of the CGC of the permutation group S(f) (Chen 1978b) 

(3a )  

Here the multiplicity label 0 distinguishes between repeated IRR of ( [ v l ] [ v z ] )  in the 
IRR [v] of SU(mn). Tables of the CGC for S(2)-S(6) are available either in the square 
root form of rationals (Chen and Gao 1981), or in decimal form (Shindler and Mirman 
1977). 

(b) The same CGC of the permutation group S ( f )  can be used to couple the IRB 
of SU(m/n) and SU(p/q) to the IRB of SU(mp + nq/mq + n p )  

[ V I  b 1 P m  I YR p u l w 1 v z w z  ) = C C v l m l . v Z m Z  Iy21 Wl>l ~ 2 2  ~ 2 ) .  
m ~ m z  

I q ; , s u l E t ; i v z ~ t . , ) =  C c l y " ; ' ~ ~ T " y ~ m z I P ~ l ,  te1>1?2~:,, $2). (36) 

Equation (3b) is the Yamanouchi basis $; of the graded permutation group in the 
( x ,  5 )  space, as well as the SU(mp + nq/mq + n p )  =, SU(m/n) x SU(p /q )  IRB, ? X i  and 
$'i being the graded Young tableaux and graded Weyl tableaux respectively. 

In the special case when all single-particle states are bosonic or fermionic, tke 
graded Young and Weyl tableaux are simply related to the ordinary Young tableaux 
and Weyl tableaux by 

m l m z  

I p;wl;r> = [ I  y k y  ) for total bosonic (3c) 
IYkWl;r) for total fermionic ( 3 4  

where a tilde denotes conjugation tableaux (interchange of rows with columns). 

(a) Let the numbers 1 , 2 , .  . . ,f be divided into two subgroups (UI) and (UZ) 

consisting of f l  and fz = f -fl numbers in ascending order 

(01)  = (a19 a23 * - 9 aft) (4 = (Ufl+l ,  * * * 9 Uf) .  

The (!l) sequences (U) = (wl, w2) are referred to as the normal order sequences. 
The IRB lY21 (wl), Wl) of S(f l )=S(ol)  and SU(m), and those lY2z(w2), WZ) of 

S(f2) = S(w2) and SU(n) can be coupled into the IRB of S ( f )  and SU(m + n )  by means 
of the ORC C~?,;~u2mz,w (Chen ef a1 1978a, b) 

[ V I  [VIP m I y m ,  ~v iwiuzwz)  = C C v 1 m ; . v 2 m z l w  I Y ~ I  (@I), W ~ > I Y ~ Z  (021, ~ 2 ) .  (4a) 
m 1 mzw 

Tables of the ORC for S(2)-S(6) in the square root form of rationals along with 
the program in ALGOL 60 have been published (Chen and Gao 1981). 
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(b) The relation (4a) remains true for the graded case 

I Px, ~ v l k l , v 2 ~ 2 )  = C k E S 2 m 2 . w  1921 (~1), @1>1922 ( ~ 2 ) '  @z> (4b) 
m l m z w  

where l?21 ( w ~ ) @ ~ )  is the IRB of S ( f 1 )  and SU(m/n) ,  and (02) '  @d the IRB of 
!%fz )  and SU(p/q). Equation (4b) is the SU(m + p / n  + q )  ISU(m/n)OSU(p/q) IRB. 
Therefore using the ORC one can easily construct such a basis for arbitrary m, n, p 
and 4. 

5. The S U ( m / n )  I SU(m) x SU(n) IRB 

The graded unitary group SU(m/n)  also contains the ordinary unitary group SU(m) X 

SU(n) as its subgroup. With equations ( 3 4  and (4b), we know that the SU(m/n) 2 
SU(m) x SU(n) IRB can be constructed in the following way: 

[ul@,m- 19;. pv:$1u2w2) = c Cu1m1.v2fi2.w I El (Wl), W1)l YZ2 (w), WZ) ( 5 )  
mlmaw 

where the meaning of I Y &  (wi ) ,  w i )  is the same as in equation (4a), while I I%,. p v l k ~ v z ~ 2  ) 
is the Yamanouchi basis [v]m of S ( f )  as well as the SU(m/n) =I SU(m) x SU(n) basis 
[v]/3vl Wlvz Wz of the graded unitary group SU(m/n) .  

6. The CGC for the special Gel'fand basis of SU(m/n)  

(a) The ORC can be written as an overlap between the coupled and uncoupled 
basis vectors (Chen et a1 1978a) 

(6) c [ v I ,  m 
v l m l ,  u2mg.w = (YX 1 Y ~ ~ ( W I ) Y Z ~  (wz)). 

Since the Yamanouchi basis of the permutation group S ( f )  is just the special Gel'fand 
basis of SU(m), m ~f (Moshinsky 1966)' the Young tableaux in equation (6) can be 
regarded as the Weyl tableaux, and the overlap thus becomes a CGC of SU(m). 
Therefore equation (6a) shows that the ORC of S ( f )  is the CGC for the special Gel'fand 
basis of SU(m) with m Sf (Chen et a1 1978a). 

( b )  With the same reasoning, it can be shown that the ORC with appropriate 
modifications in the signs gives the CGC for the special Gel'fand basis of SU(m/n). 
As an example, table 1 shows the ORC of S(3) and the CGC of SU(m), while table 2 
shows the CGC of the graded unitary group S U ( m / n ) ,  where the state indices A, B 
and C can be either bosonic or fermionic, and [BC] and [A: ]  are sign functions 
defined by Jarvis and Green (1979): [BC] = (-l)(B+c), [A:]  = (-l)'A"B+C) and (A) = 
1 (-1) for bosonic (fermionic) is the grade of state A. 

The CGC problem for the general Gel'fand basis of SU(m/n) is being investigated. 

(a) Let 
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Table 1. The ORC of S(3) and CGC of SU(m). For the ORC use the bottom and right 
headings, for the CGC of SU(m) use the top and left headings. 

m (1/3)'12 (1/3)'12 ( 1/3)'12 m 
P 
Bil 

(4/6)'12 -(1/6)'12 -(1/6)'12 P 
IF 0 ( l /2 ) l l2  -(1/2)112 

Table 2. The CGC of SU(m/n). 

be the IRB of S(f) 3 S(fl) x S(f2) in the spaces of x ,  6 and q = ( x ,  6) respectively. For 
simplicity, here and in the following, we drop all the multiplicity labels. The S(f) 3 

S(fl)  x S(f2) ISF (or the inner-product ISF) are defined as the expansion coefficients in 
the equation 

where the large square bracket indicates the coupling of [a'] X [ p l ] +  [v'lm' and 
[U"] x [ @ ' I ] +  [v"]m" in terms of the CGC of S(fl) and S(f2) respectively. Let 

be the IRB of SU(mn) 3SU(m)xSU(n) in the q-space for the particles (1, 2 , .  . . , f l ) ,  
(f l  + 1, . . . , f) and (1,2, . . . , f )  respectively. The SU(mn) = SU(m) x SU(n) f2-body 
ISF are defined by the expansion coefficients in 

with the large square bracket indicating the coupling of [a'] x [a"] + [U] W1 and 
[ p ' ] ~ [ p ' ~ ] + [ p ] W ~  in terms of the CGC of SU(m) and SU(n) respectively. The 
SU(mn) 3 SU(m) x SU(n) ISF has been identified with the S(f) 3 S(f1) X S(f2) ISF (Chen 
1981), i.e. 

(11) C'"1U" [U"'"'' 
[u'lu'~'.[u"lu"~" - - ~ [ u ] u ~ u ~ * * [ w ] & ' w " .  
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Systematic tables of the SU(mn) 3 SU(m) x SU(n) one-, two- and three-body ISF for 
up to the six-particle system are available (Chen et a1 1982b, Shi et a1 1982a,b). 

(b) It can be shown that the S(f) 13 S(f1) x S ( f 2 )  ISF are also the SU(mp + nq/mq + 
n p )  3 SU(m/n) x SU(p/q) ISF; therefore we have 

where 

are the SU(mp +nq/mq + np)  3 SU(m/n) x SU(p/q) IRB in the q = ( x ,  5 )  space for the 
particles (1,2, . . . fl), (fl + 1, . , . f )  and (1,2, , . . f )  respectively, and the large square 
bracket denotes the couplings of [U'] x [U"] + [ulfil and [p.'] x [p"]+ [ p ] f i 2  in terms of 
the CGC of SU(m/n) and SU(p/q). 

8- The SU(m +p/n + q )  3SU(m/n)OSU(p/q) ISF 

(a) Let f ~ ,  f ~ ,  f 3  and f4 be four integers, let 

f 1 2 = f 1 + f z  f34 = f3 +f4 f13 = f l  +f3 

f24=fZ+f4 
(12) 

f = f l Z  +f34 = f13 + f Z 4  

and let the three states in equation (7) be reinterpreted as the IRB for the group chains 
S(fi3) 3 S(fi) X S(f3), S(fz4) 3 S(fz) X S(f4) and S(f) 3 W i z )  X S(f341, respectively. 
Under this provision, equation (8) is now understood as a definition for the S(f) 2 
S(flz) x S(f34) outer-product ISF, with the large square bracket indicating that the 
bases are to be combined into the IRB of S(f1z) and S(f34) by the ORC of [ u ' ] O [ p ' ] +  
[dim and [U'']@ [p"] + [v"]m", respectively. 

On the other hand, the three states in equation (9) are now regarded as the IRB 
of SU(m + n )  >SU(m)OSU(n)  for the particles (1,2, . . . , f12), ( f12+ 1 , .  . . , f )  and 
(1,2, . , , , f), respectively, while equation (loa) serves as the definition for the SU(m + 
n ) I S U ( m ) O S U ( n )  f34-b~dy ISF. It can be proved that the S U ( m + n ) 2  
SU(m)OSU(n) f34-body ISF are equal to the S(f) 3S(flz) x S(f34) outer-product ISF; 
therefore equation (11) still holds under this new interpretation. 

The SU(m + n )  3 S U ( m ) O S U ( n )  one-body ISF for up to the six-particle system 
have been calculated (Chen and Gao 1982b). 

(b) Analogously, it can be shown that the S(f) 2 S(f12) x S(f34) outer-product ISF 
are also the SU(m + p / n  + q )  xSU(m/n)OSU(p/q)  ISF. Therefore we have 

where 

are the SU(m/n), SU(p/q) and SU(m + p / n  +q)  DSU(m/n)OSU(p/q) IRB for the 
particles (1,2, . . . flz), ( f lz  + 1, . . . f )  and (1,2, . . . f), respectively. The expansion 
coefficients are the S(f) 3 S(f1z) x S(f34) outer-product ISF, where a bar is used to 
emphasise that it is the outer-product rather than the inner-product ISF of S(f). 
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Finally let the three states in equation (9) be considered as the SU(m/n) 3 SU(m) X 
SU(n) IRB for the particles (1,2,. . . ,f12), (f12+ 1, . . . , f )  and (1,2,. . . ,f),  respec- 
tively. On the basis of equation (3d), it is readily seen that the SU(m/n) 3 SU(m) X 

SU(n) ISF are also related to the S(f) 3 S(fI2) X S(f34) outer-product ISF in a simple 
fashion, namely 

where the tilde denotes the conjugated partition. 

10. Conclusions 

The above outlines suffice to show that through a straightforward extension of the 
known results for the ordinary unitary groups, the seemingly formidable problem of 
the CGC and ISF of the graded unitary groups can be solved quite easily. Almost all 
these coefficients are already available, or may be calculated from existing programs. 
The reduction rules or branching rules given by Dondi and Jarvis (198 1) are natural 
consequences of the formulae here involving the various kinds of coefficients. 
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