The Clebsch-Gordan coefficients and isoscalar factors of the graded unitary group $\mathrm{SU}(\mathrm{m} / \mathrm{n})$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 16 L47
(http://iopscience.iop.org/0305-4470/16/2/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:48

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The Clebsch-Gordan coefficients and isoscalar factors of the graded unitary group $\mathrm{SU}(\boldsymbol{m} / \boldsymbol{n})$

Jin-Quan Chen ${ }^{\dagger}$, Xuan-Gen Chen \ddagger and Mei-Juan Gao \dagger
\dagger Department of Physics, Nanjing University, Nanjing, People's Republic of China
\ddagger Department of Physics, Engineer Institute of Engineer Corps, CPIA, Nanjing, People's
Republic of China

Received 4 November 1982

Abstract

It is pointed out that the Clebsch-Gordan coefficients (CGC) of the permutation group are the coefficients which couple irreducible bases (IRB) of $\operatorname{SU}(m / n)$ and $\operatorname{SU}(p / q)$ to the IRB of $\mathrm{SU}(m p+n q / m p+n p)$, and the outer-product reduction coefficients (ORC) of the permutation group are the coefficients which couple the IRB of $\operatorname{SU}(m / n)$ and $\operatorname{SU}(p / q)$ into the IRB of $\operatorname{SU}(m+p / n+q)$. The ORC of permutation groups with due modification in signs are the CGC for the special Gel'fand basis of $\operatorname{SU}(\mathrm{m} / \mathrm{n})$. The isoscalar factor (ISF) for the permutation group chain $\mathbf{S}(f) \supset \mathbf{S}\left(f_{1}\right) \times \mathbf{S}\left(f_{2}\right)$ is the ISF for the graded unitary group chain $\mathrm{SU}(m p+n q / m q+n p) \supset \mathrm{SU}(m / n) \times \mathrm{SU}(p / q)$, and the outer-product ISF for the group chain $\mathbf{S}(f) \supset \mathbf{S}\left(f_{1}\right) \times \mathbf{S}\left(f_{2}\right)$ is the isF for $\operatorname{SU}(m p+n q / m q+n p) \supset$ $\mathrm{SU}(m / n) \otimes \mathrm{SU}(p / q)$. All these coefficients can be calculated easily and some are already available.

The graded unitary group $\mathrm{SU}(m / n)$, together with its possible applications in particle and nuclear physics, has been the subject of much research (Ne'eman 1979, Dondi and Jarvis 1979, 1981, Jarvis and Green 1979, Taylor 1979, Balantekin and Bars 1981a, b, Balantekin et al 1981, Sun and Xan 1981, Xan et al 1981). Dondi and Jarvis (1981) and Balantekin and Bars (1981a) independently introduced the graded permutation group and showed that the irreducible representation (IRR) of $\operatorname{SU}(\mathrm{m} / n)$ can be labelled by the graded Young diagram. Furthermore, Dondi and Jarvis (1981) have shown that for a large class of representations, the Young diagram techniques for Krönecker products, branching rules, dimension formulae, plethysyms and so on can be continued (with suitable modifications) into the graded case. However, to the best of our knowledge, the calculation of the CGC and ISF for the $\mathrm{SU}(m / n)$ group remains an open question.

We have successively solved the problem of the CGC and ISF for the ordinary unitary group in terms of the ordinary permutation group (Chen et al 1978a, b, Chen 1981, Chen and Gao 1982b). The advantage of this permutation group approach to the CGC or ISF of the unitary group lies in the fact that the results obtained are independent of the rank of the unitary group being considered. By an extension from the permutation group to the graded permutation group, all the results related to the ordinary unitary group (Chen et al 1977b, Chen et al 1978a,b, Chen 1981) can be transferred (with slight modifications) to the graded unitary group $\mathrm{SU}(m / n)$. In this letter we sketch some new, but surprisingly simple results concerning the CGC and ISF of $\mathrm{SU}(m / n)$. Detailed accounts will be published elsewhere.

Throughout the paper, we deal only with the so-called class I representations (Balantekin and Bars 1981a), i.e. the case with state indices $A=a=1,2, \ldots, m$ representing bosonic states and $A=\alpha=m+1, \ldots, m+n$ representing fermionic states. Most of our notation follows Chen (1981) and Chen and Gao (1982b). In the following we quote the results for the ordinary and graded cases in parallel to facilitate comparison.

1. The Casimir invariants

(a) Partensky (1972a, b) showed that, in the space of f particle product states, the k th power Casimir invariants I_{k}^{m} of the group $\mathrm{U}(m)$ are functions of the i-cycle class operators $C_{(i)}(f), i=k, k-1, \ldots, 2$, of the permutation group $\mathbf{S}(f)$, as well as of the quantity m, namely
$I_{k}^{m}=F_{k}\left(C_{(k)}(f), C_{(k-1)}(f), \ldots, C_{(2)}(f), m\right) \quad k=m, m-1, \ldots, 2,1$
where F_{k} denote functional relations.
(b) It can be shown (Chen et al 1982a) that the Casimir invariants $I_{k}^{m / n}$ of $\mathrm{U}(m / n)$ can be simply obtained from equation (1a) by the substitutions

$$
\begin{equation*}
C_{(i)}(f) \rightarrow \stackrel{¿}{C}_{(i)}(f) \quad m \rightarrow m-n \tag{2}
\end{equation*}
$$

This gives

$$
\begin{equation*}
I_{k}^{m / n}=F_{k}\left(\mathcal{C}_{(k)}(f), \mathscr{C}_{(k-1)}(f), \ldots, \dot{C}_{(2)}(f), m-n\right) \quad k=m+n, m+n-1, \ldots, 2,1 \tag{1b}
\end{equation*}
$$

where $\mathcal{C}_{(i)}(f)$ is the i-cycle class operator of the graded permutation group $\mathcal{S}(f)$, which is isomorphic to the ordinary permutation group $\mathbf{S}(f)$.

Equation (b) is crucial for all the following results. It shows that the Casimir operators of $\mathrm{U}(m / n)$ are functions of the CSCO (complete set of commuting operators of the first kind, the counterpart of the Casimir operators) of $\mathbf{S}(f)$ (Chen et al 1977a, Chen and Gao 1982a). Therefore if a basis vector belongs to the $\operatorname{IRR}(\nu)$ of $\operatorname{SU}(m / n)$, it must also belong to the IRR (ν) of $\mathfrak{S}(f)$ and vice versa. Consequently we can use partitions to label the IRR of $\operatorname{SU}(m / n)$ and $\mathrm{S}(f)$.

2. The Gel'fand basis of $\operatorname{SU}(m / n)$

(a) The so-called quasi-standard (or quasi-Yamanouchi) basis of the state permutation group has been identified with the Gel'fand basis of $\operatorname{SU}(m)$ (Chen et al 1977b, Chen and Gao (1982a).
(b) Similarly, the quasi-standard basis of the graded state permutation group can be identified with the Gel'fand basis of the $\operatorname{SU}(m / n)$ group, i.e. the IRb classified according to the group chain $\mathrm{SU}(m / n) \supset \mathrm{SU}(m / n-1) \supset \ldots \supset \mathrm{SU}(\mathrm{m}) \supset \mathrm{SU}(m-1) \supset$ $\ldots \supset \mathrm{SU}(2) \supset \mathrm{U}(1)$ (Chen et al 1982a). We can use a graded (or super) Weyl tableau \dot{W}_{k}^{ν} to label a $\mathrm{SU}(m / n)$ Gel'fand basis, ν being the partition label and k the component indices. For example,

\[

\]

where a, b, c, \ldots and $\alpha, \beta, \gamma, \ldots$ are the state indices for bosons and fermions respectively.

3. The $\mathrm{SU}(m p+n q / m q+n p) \supset \mathrm{SU}(m / n) \times \mathrm{SU}(p / q)$ iRB

(a) Suppose $\left|Y_{m_{1}}^{\nu_{1}}, W_{1}^{\nu_{1}}\right\rangle\left(\left|Y_{m_{2}}^{\nu_{2}}, W_{2}^{\nu_{2}}\right\rangle\right)$ is the Yamanouchi basis $\left[\nu_{1}\right] m_{1}\left(\left[\nu_{2}\right] m_{2}\right)$ of the permutation group $\mathrm{S}(f)$, as well as the IRB $\left[\nu_{1}\right] W_{1}\left(\left[\nu_{2}\right] W_{2}\right)$ of the group $\mathrm{SU}(m)$ ($\mathrm{SU}(n)$) in the $x(\xi)$ space, where $Y_{m_{i}}^{\nu_{i}}$ are the Young tableaux, m_{i} the Yamanouchi symbols, and $W_{i}^{\nu_{i}} \equiv W_{i}$ the Weyl tableaux. The $\mathrm{SU}(m n) \supset \mathrm{SU}(m) \times \mathrm{SU}(n)$ IRB can be constructed in terms of the CGC of the permutation group $S(f)$ (Chen 1978b)

$$
\begin{equation*}
\left|Y_{m, \beta \nu_{1} W_{1} \nu_{2} W_{2}}^{\nu \nu]}\right\rangle=\sum_{m_{1} m_{2}} C_{\nu_{1} m_{1}, \nu_{2} m_{2}}^{[\nu] \beta, m}\left|Y_{m_{1}}^{\nu_{1}} W_{1}\right\rangle\left|Y_{m_{2}}^{\nu_{2}} W_{2}\right\rangle . \tag{3a}
\end{equation*}
$$

Here the multiplicity label β distinguishes between repeated IRR of $\left(\left[\nu_{1}\right]\left[\nu_{2}\right]\right)$ in the IRR [ν] of $\mathrm{SU}(m n)$. Tables of the CGC for $\mathrm{S}(2)-\mathrm{S}(6)$ are available either in the square root form of rationals (Chen and Gao 1981), or in decimal form (Shindler and Mirman 1977).
(b) The same cGC of the permutation group $\mathrm{S}(f)$ can be used to couple the IRB of $\mathrm{SU}(m / n)$ and $\mathrm{SU}(p / q)$ to the IRB of $\mathrm{SU}(m p+n q / m q+n p)$

Equation (3b) is the Yamanouchi basis \dot{Y}_{m}^{ν} of the graded permutation group in the (x, ξ) space, as well as the $\operatorname{SU}(m p+n q / m q+n p) \supset \operatorname{SU}(m / n) \times \operatorname{SU}(p / q)$ IRB, $\dot{Y}_{m_{i}}^{\nu_{i}}$ and \dot{W}_{i} being the graded Young tableaux and graded Weyl tableaux respectively.

In the special case when all single-particle states are bosonic or fermionic, the graded Young and Weyl tableaux are simply related to the ordinary Young tableaux and Weyl tableaux by

$$
\left|\dot{Y}_{m}^{\nu} \dot{W}_{k}^{\nu}\right\rangle= \begin{cases}\left|Y_{m}^{\nu} W_{k}^{\nu}\right\rangle & \text { for total bosonic } \tag{3c}\\ \left|\tilde{Y}_{m}^{\nu} \dot{W}_{k}^{\nu}\right\rangle & \text { for total fermionic }\end{cases}
$$

where a tilde denotes conjugation tableaux (interchange of rows with columns).

4. The $S U(m+p / n+q) \supset S U(m / n) \otimes \operatorname{SU}(p / q)$ IRB

(a) Let the numbers $1,2, \ldots, f$ be divided into two subgroups $\left(\omega_{1}\right)$ and (ω_{2}) consisting of f_{1} and $f_{2}=f-f_{1}$ numbers in ascending order

$$
\left(\omega_{1}\right)=\left(a_{1}, a_{2}, \ldots, a_{f_{1}}\right) \quad\left(\omega_{2}\right)=\left(a_{f_{1}+1}, \ldots, a_{f}\right)
$$

The $\left(f_{f_{1}}\right)$ sequences $(\omega)=\left(\omega_{1}, \omega_{2}\right)$ are referred to as the normal order sequences.
The IRB $\left|Y_{m_{1}}^{\nu_{1}}\left(\omega_{1}\right), W_{1}\right\rangle$ of $\mathrm{S}\left(f_{1}\right)=\mathbf{S}\left(\omega_{1}\right)$ and $\mathrm{SU}(m)$, and those $\left|Y_{m_{2}}^{\nu_{2}}\left(\omega_{2}\right), W_{2}\right\rangle$ of $\mathbf{S}\left(f_{2}\right)=\mathbf{S}\left(\omega_{2}\right)$ and $\mathrm{SU}(n)$ can be coupled into the IRB of $\mathbf{S}(f)$ and $\mathrm{SU}(m+n)$ by means of the ORC $C_{\nu_{1} m_{1}, \nu_{2} m_{2}, \omega}^{[\nu \lambda, \omega}$ (Chen et al 1978a, b)

$$
\begin{equation*}
\left|Y_{m, \beta \nu}^{\nu}{ }_{1}^{[\nu]} W_{1} \nu_{2} W_{2}\right\rangle=\sum_{m_{1} m_{2} \omega} C_{\nu_{1} m_{1}, \nu_{2} m_{2}, \omega}^{[\nu] \beta, m}\left|Y_{m_{1}}^{\nu_{1}}\left(\omega_{1}\right), W_{1}\right\rangle\left|Y_{m_{2}}^{\nu_{2}}\left(\omega_{2}\right), W_{2}\right\rangle . \tag{4a}
\end{equation*}
$$

Tables of the ORC for $S(2)-S(6)$ in the square root form of rationals along with the program in Algol 60 have been published (Chen and Gao 1981).
(b) The relation (4a) remains true for the graded case

$$
\begin{equation*}
\left|\dot{Y}_{m, \beta \nu_{1}}^{\nu}{ }_{2}^{\nu W_{1} \nu_{2} W_{2}}\right\rangle=\sum_{m_{1} m_{2} \omega} C_{\nu_{1} m_{1}, \nu_{2} m_{2}, \omega}^{[\nu] \beta, m_{1}}\left|\dot{Y}_{m_{1}}^{\nu_{1}}\left(\omega_{1}\right), \dot{W}_{1}\right\rangle\left|\dot{Y}_{m_{2}}^{\gamma_{2}}\left(\omega_{2}\right), \dot{W}_{2}\right\rangle \tag{4b}
\end{equation*}
$$

where $\left|\dot{Y}_{m_{1}}^{\nu_{1}}\left(\omega_{1}\right) \dot{W}_{1}\right\rangle$ is the IRB of $\mathcal{S}\left(f_{1}\right)$ and $\operatorname{SU}(m / n)$, and $\left|\dot{Y}_{m_{2}}^{\nu_{2}}\left(\omega_{2}\right), \dot{W}_{2}\right\rangle$ the IRB of $\grave{\mathrm{S}}\left(f_{2}\right)$ and $\mathrm{SU}(p / q)$. Equation (4b) is the $\mathrm{SU}(m+p / n+q) \supset \mathrm{SU}(\mathrm{m} / n) \otimes \mathrm{SU}(p / q)$ IRB. Therefore using the ORC one can easily construct such a basis for arbitrary m, n, p and q.

5. The $\mathbf{S U}(m / n) \supset \mathbf{S U}(m) \times \mathbf{S U}(n)$ IRB

The graded unitary group $\operatorname{SU}(m / n)$ also contains the ordinary unitary group $\mathrm{SU}(m) \times$ $\mathrm{SU}(n)$ as its subgroup. With equations (3d) and (4b), we know that the $\mathrm{SU}(m / n) \supset$ $\mathrm{SU}(m) \times \operatorname{SU}(n)$ IRB can be constructed in the following way:

$$
\begin{equation*}
\left.\left|\dot{Y}_{m, \beta \nu}^{\nu}{\underset{m}{\nu}}_{[\nu] W_{1} \nu_{2} W_{2}}^{[\nu]}=\sum_{m_{1} m_{2} \omega} C_{\nu_{1} m_{1}, \dot{\nu}_{2} \tilde{m}_{2}, \omega}^{[\nu]], Y_{m_{1}}}\right| Y_{m_{1}}^{\nu_{1}}\left(\omega_{1}\right), W_{1}\right)\left|Y_{m_{2}}^{\nu_{2}}\left(\omega_{2}\right), W_{2}\right\rangle \tag{5}
\end{equation*}
$$

where the meaning of $\left|Y_{m_{i}}^{\nu_{i}}\left(\omega_{i}\right), w_{i}\right\rangle$ is the same as in equation (4a), while $\left|\dot{Y}_{m, \beta \nu_{1} W_{1} \nu_{2} W_{2}}^{\nu}\right\rangle$ is the Yamanouchi basis [$\nu] m$ of $\stackrel{S}{S}(f)$ as well as the $\mathrm{SU}(m / n) \supset \mathrm{SU}(m) \times \mathbf{S U}(n)$ basis $[\nu] \beta \nu_{1} W_{1} \nu_{2} W_{2}$ of the graded unitary group $\mathrm{SU}(m / n)$.

6. The cGc for the special Gel'fand basis of $\mathrm{SU}(\boldsymbol{m} / \boldsymbol{n})$

(a) The ORC can be written as an overlap between the coupled and uncoupled basis vectors (Chen et al 1978a)

$$
\begin{equation*}
C_{\nu_{1} m_{1}, \nu_{2} m_{2}, \omega}^{[\nu]}=\left\langle Y_{m}^{\nu} \mid Y_{m_{1}}^{\nu_{1}}\left(\omega_{1}\right) Y_{m_{2}}^{\nu_{2}}\left(\omega_{2}\right)\right\rangle . \tag{6}
\end{equation*}
$$

Since the Yamanouchi basis of the permutation group $S(f)$ is just the special Gel'fand basis of $\operatorname{SU}(m), m \geqslant f$ (Moshinsky 1966), the Young tableaux in equation (6) can be regarded as the Weyl tableaux, and the overlap thus becomes a CGC of $\mathrm{SU}(\mathrm{m})$. Therefore equation (6a) shows that the ORC of $S(f)$ is the CGC for the special Gel'fand basis of $\mathrm{SU}(m)$ with $m \geqslant f$ (Chen et al 1978a).
(b) With the same reasoning, it can be shown that the ORC with appropriate modifications in the signs gives the CGC for the special Gel'fand basis of $\mathrm{SU}(m / n)$. As an example, table 1 shows the ORC of $S(3)$ and the CGC of $\operatorname{SU}(m)$, while table 2 shows the CGC of the graded unitary group $\operatorname{SU}(m / n)$, where the state indices A, B and C can be either bosonic or fermionic, and $[B C]$ and $\left[A{ }_{C}^{B}\right]$ are sign functions defined by Jarvis and Green (1979): $[B C]=(-1)^{(B+C)},\left[{ }^{A}{ }_{C}^{B}\right]=(-1)^{(A)(B+C)}$ and $(A)=$ $1(-1)$ for bosonic (fermionic) is the grade of state A.

The cGC problem for the general Gel'fand basis of $\mathrm{SU}(m / n)$ is being investigated.

7. The $\operatorname{SU}(m p+n q / m q+n p) \supset \mathbf{S U}(m / n) \times \operatorname{SU}(p / q)$ iSF

(a) Let

$$
\left|\begin{array}{c}
{[\sigma]} \tag{7}\\
\sigma^{\prime} m_{1}^{\prime} \sigma^{\prime \prime} m_{1}^{\prime \prime}
\end{array}\right\rangle,\left|\begin{array}{c}
{[\mu]} \\
\mu^{\prime} m_{2}^{\prime} \mu^{\prime \prime} m_{2}^{\prime \prime}
\end{array}\right\rangle, \quad\left|\begin{array}{c}
{[\nu]} \\
\nu^{\prime} m^{\prime} \nu^{\prime \prime} m^{\prime \prime}
\end{array}\right\rangle
$$

Table 1. The ORC of $S(3)$ and cGC of $\mathrm{SU}(m)$. For the orc use the bottom and right headings, for the CGC of $\operatorname{SU}(m)$ use the top and left headings.

	[1] ${ }^{\text {a }}$	[ac] ${ }^{\text {b }}$	[b]a ${ }^{\text {a }}$	
$\square \mathrm{ablc}$	$(1 / 3)^{1 / 2}$	$(1 / 3)^{1 / 2}$	$(1 / 3)^{1 / 2}$	(12)3
ab	$(4 / 6)^{1 / 2}$	$-(1 / 6)^{1 / 2}$	$-(1 / 6)^{1 / 2}$	$\left(\frac{112}{3}\right)^{2}$
[品	0	$(1 / 2)^{1 / 2}$	$-(1 / 2)^{1 / 2}$	$\left[\frac{1}{2}\right]^{3}$
	[12] 3	(113) [2]	[2]3 [1]	

Table 2. The CGC of $\operatorname{SU}(m / n)$.

	(1 (1) [${ }^{\text {c }}$	[$A C$ 固	[B]C ($]^{\text {] }}$
$\triangle A B C$	$(1 / 3)^{1 / 2}$	$(1 / 3)^{1 / 2}$	$(1 / 3)^{1 / 2}\left[A_{C}^{B}\right]$
$\frac{A}{C D}$	$(4 / 6)^{1 / 2}$	$-(1 / 6)^{1 / 2}[B C]$	$-(1 / 6)^{1 / 2}\left[A^{\text {b }}\right]$
$\sqrt{A C}$	0	$(1 / 2)^{1 / 2}[B C]$	$-(1 / 2)^{1 / 2}\left[{ }^{\text {A }}{ }_{C}^{B}\right]$

be the IRB of $\mathbf{S}(f) \supset \mathbf{S}\left(f_{1}\right) \times \mathbf{S}\left(f_{2}\right)$ in the spaces of x, ξ and $q=(x, \xi)$ respectively. For simplicity, here and in the following, we drop all the multiplicity labels. The $S(f) \supset$ $\mathbf{S}\left(f_{1}\right) \times \mathbf{S}\left(f_{2}\right)$ ISF (or the inner-product ISF) are defined as the expansion coefficients in the equation

$$
\left|\begin{array}{c}
{[\nu]} \tag{8}\\
\nu^{\prime} m^{\prime} \nu^{\prime \prime} m^{\prime \prime}
\end{array}\right\rangle=\sum_{\sigma^{\prime} \sigma^{\prime \prime} \mu^{\prime} \mu^{\prime \prime}} C_{[\sigma] \sigma^{\prime} \sigma^{\prime \prime},[\mu] \mu^{\prime} \mu^{\prime \prime}}^{\left.\left.[\nu]\left[\begin{array}{c}
{[\sigma]} \\
\sigma^{\prime} \sigma^{\prime \prime}
\end{array}\right\rangle\left|\begin{array}{c}
{[\mu]} \\
\mu^{\prime} \mu^{\prime \prime}
\end{array}\right\rangle\right]_{m^{\prime} m^{\prime \prime}}^{\left[\nu ^ { \prime } \left\{\left[\nu^{\prime \prime}\right]\right.\right.}\right]}
$$

where the large square bracket indicates the coupling of $\left[\sigma^{\prime}\right] \times\left[\mu^{\prime}\right] \rightarrow\left[\nu^{\prime}\right] m^{\prime}$ and $\left[\sigma^{\prime \prime}\right] \times\left[\mu^{\prime \prime}\right] \rightarrow\left[\nu^{\prime \prime}\right] m^{\prime \prime}$ in terms of the CGC of $S\left(f_{1}\right)$ and $S\left(f_{2}\right)$ respectively. Let

$$
\left|\begin{array}{c}
{\left[\nu^{\prime}\right]} \tag{9}\\
\sigma^{\prime} W_{1}^{\prime} \mu^{\prime} W_{2}^{\prime}
\end{array}\right\rangle \quad\left|\begin{array}{c}
\nu^{\prime \prime} \\
\sigma^{\prime \prime} W_{1}^{\prime \prime} \mu^{\prime \prime} W_{2}^{\prime \prime}
\end{array}\right\rangle \quad\left|\begin{array}{c}
{[\nu]} \\
\sigma W_{1} \mu W_{2}
\end{array}\right\rangle
$$

be the IRB of $\mathrm{SU}(m n) \supset \mathrm{SU}(m) \times \operatorname{SU}(n)$ in the q-space for the particles $\left(1,2, \ldots, f_{1}\right)$, $\left(f_{1}+1, \ldots, f\right)$ and $(1,2, \ldots, f)$ respectively. The $\mathrm{SU}(m n) \supset \mathrm{SU}(m) \times \mathrm{SU}(n) f_{2}$-body ISF are defined by the expansion coefficients in

$$
\left.\left|\begin{array}{c}
{[\nu]} \tag{10a}\\
\sigma W_{1} \mu W_{2}
\end{array}\right\rangle=\sum_{\sigma^{\prime} \mu^{\prime} \sigma^{\prime \prime} \mu^{\prime \prime}} C_{\left[\nu^{\prime}\right] \sigma^{\prime} \mu^{\prime}\left[\nu^{\prime \prime}\right] \sigma^{\prime \prime} \mu^{\prime \prime}}^{[\nu]}\left[\begin{array}{c}
{\left[\nu^{\prime}\right]} \\
\sigma^{\prime} \mu^{\prime}
\end{array}\right\rangle\left|\frac{\left[\nu^{\prime \prime}\right]}{\sigma^{\prime \prime} \mu^{\prime \prime}}\right\rangle\right]_{W_{1} W_{2}}^{[\sigma][\mu]}
$$

with the large square bracket indicating the coupling of $\left[\sigma^{\prime}\right] \times\left[\sigma^{\prime \prime}\right] \rightarrow[\sigma] W_{1}$ and $\left[\mu^{\prime}\right] \times\left[\mu^{\prime \prime}\right] \rightarrow[\mu] W_{2}$ in terms of the CGC of $\operatorname{SU}(m)$ and $\operatorname{SU}(n)$ respectively. The $\mathbf{S U}(m n) \supset \mathbf{S U}(m) \times \mathbf{S U}(n)$ isF has been identified with the $\mathbf{S}(f) \supset \mathbf{S}\left(f_{1}\right) \times \mathbf{S}\left(f_{2}\right)$ ISF (Chen 1981), i.e.

$$
\begin{equation*}
C_{[\nu}^{[\nu]] \sigma^{\prime} \mu^{\prime}:\left[\nu^{\prime \prime}\right] \sigma^{\prime \prime} \mu^{\prime \prime}}=C_{[\sigma] \sigma^{\prime} \sigma^{\prime \prime},[\mu] \mu^{\prime} \mu^{\prime \prime}}^{[\nu]} \tag{11}
\end{equation*}
$$

Systematic tables of the $\mathrm{SU}(m n) \supset \mathbf{S U}(m) \times \mathbf{S U}(n)$ one-, two- and three-body ISF for up to the six-particle system are available (Chen et al 1982b, Shi et al 1982a,b).
(b) It can be shown that the $\mathbf{S}(f) \supset \mathbf{S}\left(f_{1}\right) \times \mathbf{S}\left(f_{2}\right)$ ISF are also the $\mathrm{SU}(m p+n q / m q+$ $n p) \supset S U(m / n) \times S U(p / q)$ isF; therefore we have

$$
\left.\left.\left|\begin{array}{c}
{[\nu]} \tag{10b}\\
\sigma \dot{W}_{1} \mu \dot{W}_{2}
\end{array}\right\rangle=\sum_{\sigma^{\prime} \sigma^{\prime \prime} \mu^{\prime} \mu^{\prime \prime}} C_{[\sigma] \sigma^{\prime} \sigma^{\prime \prime}[\mu] \mu^{\prime} \mu^{\prime \prime}}^{[\nu]}\left[\begin{array}{c}
{\left[\nu^{\prime}\right]} \\
\sigma^{\prime} \mu^{\prime}
\end{array}\right\rangle \right\rvert\, \begin{array}{c}
{\left[\begin{array}{c}
\left.\nu^{\prime \prime}\right] \\
\sigma^{\prime \prime} \mu^{\prime \prime}
\end{array}\right\rangle}
\end{array}\right]_{W_{1} W_{2}}^{[\sigma][\mu]}
$$

where

$$
\left|\begin{array}{c}
{\left[\nu^{\prime}\right]} \\
\sigma^{\prime} \mu^{\prime}
\end{array}\right\rangle, \quad\left|\begin{array}{c}
{\left[\nu^{\prime \prime}\right]} \\
\sigma^{\prime \prime} \mu^{\prime \prime}
\end{array}\right\rangle \quad \text { and }\left|\begin{array}{c}
{[\nu]} \\
\sigma \mathscr{W}_{1} \mu \mathscr{W}_{2}
\end{array}\right\rangle
$$

are the $\mathrm{SU}(m p+n q / m q+n p) \supset \mathrm{SU}(m / n) \times \operatorname{SU}(p / q)$ IRB in the $q=(x, \xi)$ space for the particles $\left(1,2, \ldots f_{1}\right),\left(f_{1}+1, \ldots f\right)$ and $(1,2, \ldots f)$ respectively, and the large square bracket denotes the couplings of $\left[\sigma^{\prime}\right] \times\left[\sigma^{\prime \prime}\right] \rightarrow[\sigma] W_{1}$ and $\left[\mu^{\prime}\right] \times\left[\mu^{\prime \prime}\right] \rightarrow[\mu] W_{2}$ in terms of the CGC of $\operatorname{SU}(m / n)$ and $\operatorname{SU}(p / q)$.

8. The $S U(m+p / n+q) \supset S U(m / n) \otimes S U(p / q)$ isF

(a) Let f_{1}, f_{2}, f_{3} and f_{4} be four integers, let

$$
\begin{array}{ll}
f_{12}=f_{1}+f_{2} & f_{34}=f_{3}+f_{4} \quad f_{13}=f_{1}+f_{3} \tag{12}\\
f_{24}=f_{2}+f_{4} & f=f_{12}+f_{34}=f_{13}+f_{24}
\end{array}
$$

and let the three states in equation (7) be reinterpreted as the IRB for the group chains $\mathbf{S}\left(f_{13}\right) \supset \mathbf{S}\left(f_{1}\right) \times \boldsymbol{S}\left(f_{3}\right), \quad \mathbf{S}\left(f_{24}\right) \supset \mathbf{S}\left(f_{2}\right) \times \mathbf{S}\left(f_{4}\right)$ and $\boldsymbol{S}(f) \supset \mathbf{S}\left(f_{12}\right) \times \mathbf{S}\left(f_{34}\right)$, respectively. Under this provision, equation (8) is now understood as a definition for the $S(f) \supset$ $\mathbf{S}\left(f_{12}\right) \times \mathbf{S}\left(f_{34}\right)$ outer-product isF, with the large square bracket indicating that the bases are to be combined into the IRB of $\mathbf{S}\left(f_{12}\right)$ and $\mathbf{S}\left(f_{34}\right)$ by the ORC of $\left[\sigma^{\prime}\right] \otimes\left[\mu^{\prime}\right] \rightarrow$ $\left[\nu^{\prime}\right] m^{\prime}$ and $\left[\sigma^{\prime \prime}\right] \otimes\left[\mu^{\prime \prime}\right] \rightarrow\left[\nu^{\prime \prime}\right] m^{\prime \prime}$, respectively.

On the other hand, the three states in equation (9) are now regarded as the IRB of $\mathrm{SU}(m+n) \supset \mathrm{SU}(m) \otimes \mathrm{SU}(n)$ for the particles $\left(1,2, \ldots, f_{12}\right),\left(f_{12}+1, \ldots, f\right)$ and $(1,2, \ldots, f)$, respectively, while equation (10a) serves as the definition for the $\mathrm{SU}(m+$ $n) \supset S U(m) \otimes \operatorname{SU}(n) f_{34}$-body ISF. It can be proved that the $\mathrm{SU}(m+n) \supset$ $\mathbf{S U}(m) \otimes \mathbf{S U}(n) f_{34}$-body ISF are equal to the $\mathbf{S}(f) \supset \mathbf{S}\left(f_{12}\right) \times \mathbf{S}\left(f_{34}\right)$ outer-product isF; therefore equation (11) still holds under this new interpretation.

The $\mathrm{SU}(m+n) \supset \mathrm{SU}(m) \otimes \mathrm{SU}(n)$ one-body ISF for up to the six-particle system have been calculated (Chen and Gao 1982b).
(b) Analogously, it can be shown that the $\mathbf{S}(f) \supset \mathbf{S}\left(f_{12}\right) \times \mathbf{S}\left(f_{34}\right)$ outer-product ISF are also the $\mathrm{SU}(m+p / n+q) \supset \mathrm{SU}(m / n) \otimes \mathrm{SU}(p / q)$ ISF. Therefore we have

$$
\left.\left|\begin{array}{c}
{[\nu]} \tag{13}\\
\sigma \dot{W}_{1} \mu \dot{W}_{2} \dot{W}_{2}
\end{array}\right\rangle=\sum_{\sigma^{\prime} \sigma^{\prime \prime} \mu^{\prime} \mu^{\prime \prime}} \bar{C}_{[\sigma] \sigma^{\prime} \sigma^{\prime \prime},[\mu] \mu^{\prime} \mu^{\prime \prime}}^{[\nu] \nu^{\prime}}\left[\begin{array}{c}
{\left[\nu^{\prime}\right]} \\
\sigma^{\prime} \mu^{\prime}
\end{array}\right\rangle\left|\begin{array}{c}
{\left[\nu^{\prime \prime}\right]} \\
\sigma^{\prime \prime} \mu^{\prime \prime}
\end{array}\right\rangle\right]_{\dot{W}_{1} \dot{W}_{2}}^{[\sigma][\mu]}
$$

where

$$
\left|\begin{array}{c}
{\left[\nu^{\prime}\right]} \\
\sigma^{\prime} \mu^{\prime}
\end{array}\right\rangle, \quad\left|\begin{array}{c}
{\left[\nu^{\prime \prime}\right]} \\
\sigma^{\prime \prime} \mu^{\prime \prime}
\end{array}\right\rangle \quad \text { and }\left|\begin{array}{c}
{[\nu]} \\
\sigma \dot{W}_{1} \mu \mathscr{W}_{2}
\end{array}\right\rangle
$$

are the $\mathrm{SU}(m / n), \mathrm{SU}(p / q)$ and $\mathrm{SU}(m+p / n+q) \supset \mathrm{SU}(m / n) \otimes \mathrm{SU}(p / q)$ IRB for the particles $\left(1,2, \ldots f_{12}\right),\left(f_{12}+1, \ldots f\right)$ and ($1,2, \ldots f$), respectively. The expansion coefficients are the $\mathbf{S}(f) \supset \mathbf{S}\left(f_{12}\right) \times \mathbf{S}\left(f_{34}\right)$ outer-product ISF, where a bar is used to emphasise that it is the outer-product rather than the inner-product ISF of $\mathbf{S}(f)$.

9. The $\operatorname{SU}(m / n) \supset \operatorname{SU}(m) \times \operatorname{SU}(n)$ isf

Finally let the three states in equation (9) be considered as the $\mathrm{SU}(m / n) \supset \mathrm{SU}(m) \times$ $\operatorname{SU}(n)$ IRB for the particles $\left(1,2, \ldots, f_{12}\right),\left(f_{12}+1, \ldots, f\right)$ and $(1,2, \ldots, f)$, respectively. On the basis of equation (3d), it is readily seen that the $\mathrm{SU}(m / n) \supset \mathrm{SU}(m) \times$ $\mathbf{S U}(n)$ ISF are also related to the $\mathbf{S}(f) \supset \mathbf{S}\left(f_{12}\right) \times \mathbf{S}\left(f_{34}\right)$ outer-product isF in a simple fashion, namely

$$
\left.\left.\left|\begin{array}{c}
{[\nu]} \tag{14}\\
\sigma W_{1} \mu W_{2}
\end{array}\right\rangle=\sum_{\sigma^{\prime} \sigma^{\prime \prime} \mu^{\prime} \mu^{\prime \prime}} C_{[\sigma] \sigma^{\prime} \sigma^{\prime \prime}\left[\tilde{\mu^{\prime}}\right] \mu^{\prime} \mu^{\prime \prime}}^{[\nu] v^{\prime} \nu^{\prime \prime}}\left[\begin{array}{c}
{\left[\nu^{\prime}\right]} \\
\sigma^{\prime} \mu^{\prime}
\end{array}\right\rangle \right\rvert\, \begin{array}{c}
{\left[\begin{array}{c}
\left.\nu^{\prime}\right] \\
\sigma^{\prime \prime} \mu^{\prime \prime}
\end{array}\right\rangle}
\end{array}\right]_{W_{1} W_{2}}^{[\sigma][\mu]}
$$

where the tilde denotes the conjugated partition.

10. Conclusions

The above outlines suffice to show that through a straightforward extension of the known results for the ordinary unitary groups, the seemingly formidable problem of the CGC and ISF of the graded unitary groups can be solved quite easily. Almost all these coefficients are already available, or may be calculated from existing programs. The reduction rules or branching rules given by Dondi and Jarvis (1981) are natural consequences of the formulae here involving the various kinds of coefficients.

References

Balantekin A B and Bars I 1981a J. Math. Phys. 221149
-_ 1981b J. Math. Phys. 221810
Balantekin A B, Bars I and Iachello F 1981 Nucl. Phys. A 370284
Chen J Q 1981 J. Math. Phys. 221
Chen J Q, Chen X G and Gao M J 1982a to be published
Chen J Q and Gao M J 1981 Reduction Coefficients of Permutation Groups (Beijing: Science)

- 1982a J. Math. Phys. 23928
-_ 1982b to be published
Chen J Q, Vallieres M Feng D H and Shi Y J 1982b to be published
Chen J Q, Wang F and Gao M J 1977a Acta Phys. Sinica 26307 (trans. 1981 Chinese Phys. 1 533)
—— 1977b Acta Phys. Sinica 26427 (trans. 1981 Chinese Phys. 1 542)
- 1978a Acta Phys. Sinica 2731
- 1978b Acta Phys. Sinica 27203

Dondi P H and Jarvis P D 1979 Phys. Lett. 84B 75

- 1981 J. Phys. A: Math. Gen. 14547

Jarvis P D and Green H S 1979 J. Math. Phys. 202115
Moshinsky M 1966 J. Math. Phys. 7691
Ne'eman Y 1979 Phys. Lett. 81B 190
Partensky A 1972a J. Math. Phys. 13621
—— 1972b J. Math. Phys. 131503
Shi Y J et al 1982a to be published
_- 1982 b to be published
Shindler S and Mirman R 1977 J. Math. Phys. 181697
Sun X Z and Xan Q Z 1981 Scientia Sinica 24914
Taylor J G 1979 Phys. Rev. Lett. 43824
Xan Q Z et al 1981 Phys. Energ. Fortis Phys. Nucl. 5546

